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The data-rate in currently deployed multi-carrier digital subscriber line (DSL) commu-
nication systems is limited by the interference among copper lines. This interference can
be alleviated by multi-user transmit power allocation. Problem decomposition results in a
large number of per-subcarrier problems. Our objective is to solve these nonconvex
integer per-subcarrier power control problems at low complexity. For this purpose we
develop ten combinatorial heuristics and test them by simulation under a small complex-
ity budget in scenarios with tens of DSL users, where optimal solutions are currently
intractable. Simulation results lead us to the conclusion that simple randomized greedy
heuristics extended by a specific local search perform well despite the stringent complex-
ity restriction. This has implications on multi-user discrete resource allocation algorithms,
as these can be designed to jointly optimize transmit power among users even in large-
scale scenarios.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

In 2012 over 360 million customers world-wide uti-
lized digital subscriber lines (DSL), making it the most
widely deployed fixed broadband access technology [1].
While each user has at least one dedicated copper line,
multi-carrier DSL systems still suffer from the electro-
magnetic coupling (or “interference”) among the twisted
copper pairs. The effect is noise at the receiver, which
limits the achievable data-rate and increases the energy
consumption per transmitted data-bit. We study the non-
convex integer multi-user problem of controlling the
power levels transmitted by all users on the subcarriers
in order to lower interference, increase the number of
transmitted data-bits, and reduce the transmit-power
2;

erstorfer),
ström).
consumption (implicitly lowering the system power con-
sumption [2]). The objective is formulated as a weighted
sum of users' transmit powers and bits, constrained by
technology and regulatory restrictions. This fundamental
problem also finds applications in wireless networks [3–6].

The main contribution of this study lies in the com-
parative simulation experiments including ten combina-
torial heuristics for large-scale discrete single-subcarrier
power control with a low complexity budget. We propose
a mixture of deterministic and stochastic heuristics,
the latter comprising more direct applications of meta-
heuristics as well as greedy schemes modified based
on problem insights. These insights are derived from an
analysis of suboptimality of these deterministic greedy
algorithms, and motivate for example randomization-
based modifications. Preliminary simulation results have
appeared in [7,8]. However, the present study specifically
focusses on the single-subcarrier problem and additionally
provides full descriptions of all proposed heuristics, their
parameter settings, as well as the detailed simulation
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results on an extensive set of 6 and 30-user DSL scenarios.
While previously stochastic search heuristics may have
been considered too complex for power control on a large
number of subcarriers, our results show that simple rando-
mized greedy heuristics enhanced by first-improving
local search perform well even in case of a very stringent
complexity budget, and that the heuristics' average
suboptimality is implicitly dependent on the targeted
data-rate.

We begin in Sections 2, 3.1, and 3.2 by reviewing some
relevant literature, stating our notation, and reviewing the
common nonconvex integer optimization model for power
control in DSL, respectively. The “no free lunch” theorem
states that, under specific assumptions on the problem
domain and applied algorithms, any two algorithms have
the same mean performance when compared over all
possible problems [9] – we refer to [9] for a precise state-
ment of this result. Hence, optimization heuristics cannot
be regarded as superior in general, but should rather be
evaluated for the specific problem domain based on a
representative problem set. Generic optimization heuristics
evaluated on an insufficient problem set may hence per-
form very differently in practice thanwhat the simulation of
the problem set would have suggested. Therefore problem-
specific insights shall be exploited in the design of optimi-
zation heuristics, and a representative sampling of problem
instances is needed in order to judge the performance of
heuristics in a specific problem domain. Consequently, we
introduce the three generic search principles applied
throughout the paper in Section 4, review three basic
search schemes from [10] following these search principles
in Section 4.1, and in Section 4.2 analyze their performance
on a selection of 84 medium-scale problems where optimal
solutions are tractable. A branch-and-bound algorithm and
a general-purpose mixed-integer nonconvex problem sol-
ver [11,12] are applied to generate the optimal reference
solutions. It turns out that a specific problem feature (the
well-known “near–far problem”) leads to a high suboptim-
ality of two greedy base-heuristics. The insights gained
thereby as well as general meta-heuristics are applied
in Section 5 to complement the set of, in total, ten
combinatorial search heuristics for power control. For
example, in Section 5.1 the greedy decisions of loading bits
are randomized, while in Section 5.2.1 the sequence of
greedy per-user decisions is randomized. The simulation
setup and the methodology for the parameterization and
performance evaluation of the heuristics in medium-scale
and large-scale problems are described in Sections 6.1–6.4,
respectively. The discussion of results in Section 6.5 is
followed by our conclusions in Section 7.

2. Background on power control in DSL

Multi-carrier power control can be modeled as a multi-
dimensional nonlinear Knapsack problem [13] which has
motivated the application of Lagrange decomposition
[14,15]. Thereby one obtains a large number of integer
per-subcarrier subproblems which have to be solved
numerous times for updating the Lagrange multipliers,
and re-optimized when the DSL network changes. This
motivates the tight complexity budget we impose upon
their solution, where for reproducibility we opt for the
number of function evaluations as our complexity metric,
cf. Section 6.1 for its relation to simulation time. We
explicitly focus on these subproblems only, where the
objective is a weighted sum of data-bits and transmit
power, cf. the large applicability of this problem [10,15].
Optimal algorithms are only tractable for medium-scale
networks with few-users [11,16,17]. However, the low
interference coupling compared to the direct coupling over
a subscriber line that is typical for DSL [18] makes us believe
that simple stochastic search heuristics may perform near-
optimal evenwhen constrained to a low number of function
evaluations. Efficient state-of-the-art methods for power
control in large-scale DSL networks solve a continuous
relaxation only or violate the integer bit-loading restriction
by iterating over users [19,20]. The nonlinear Dantzig–
Wolfe decomposition approach in [10] allows for subopti-
mal solutions of the per-subcarrier problems, making the
application of combinatorial search schemes as dual heur-
istics attractive. Furthermore, combinatorial heuristics
could be applied on top of any previously proposed (e.g.,
continuous) power allocation algorithm in order to improve
a rounded preliminary solution.
3. System and optimization model

3.1. System model and notation

We consider a communication network with U DSL
users, and refer to [18] for a more detailed description of
the technical background on DSL. By adequate modulation
techniques the frequency bandwidth is subdivided into C
regularly spaced and mutually exclusive frequency sub-
carriers. The index sets of users and subcarriers are U ¼
f1;…;Ug and C¼ f1;…;Cg, respectively. Our optimization
variables are the power levels pcu applied by user u and
subcarrier c. The achievable number of data-bits per
channel-access of user u on subcarrier c is modeled as a,
in general, nonconvex function rcuðpcÞ [bits] [18] that
depends on the transmit powers of all users. The transmit
powers and data-bits over all users on subcarrier c are
more compactly written as pcARU

þ and rcðpcÞARU
þ ,

respectively. The inverse function pcðrcÞ for a bit allocation
rc is uniquely computable [21] by solving a system of linear
equations of size U � U. A publicly available tool for DSL
performance evaluation can be found in [22]. We refer to
Section 6.1 for a description of the network scenarios
considered in this work.

Transmit power levels are constrained by a regulatory
power mask constraint pcur p̂c

u, 8uAU, cAC, preventing
excessive disturbance among competing DSL operators.
Furthermore, the implicit constraint rcuðpcÞAB; 8uAU;
cAC, is motivated by practical modulation schemes which
only support an integer number of data-bits in the set
B¼ f1;…; B̂g, with a technology-dependent maximum
number of data-bits B̂ per subcarrier. The feasible set of
transmit powers is summarized as Qc ¼ fpcjrcuðpcÞAB;
0rpcur p̂c

u; 8uAUg, cAC. Our objective is defined as
the weighted sum of transmit powers and data-bits
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over all users

f
w
c ðpcÞ ¼ ∑

uAU
ŵupcu� �wurcuðpcÞ; cAC; ð1Þ

where the weights wT ¼ ½ŵ1;…; ŵU ; �w1;…; �wU �ARU
þ

allow us to trade-off between data-rate and energy opti-
mization, and also capture Lagrange dual variables in
large-scale power control frameworks [10,15].
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Fig. 1. Illustration of the three search principles underlying our base-
heuristics; (a) constructive bit allocation (shown: based on a solution
r¼ 0, the number of data-bits of user 2 is increased by 1); (b) constructive
sequential decision making (shown: the data-bits of user 2 are decided after
the decision for user 1 has been made); (c) improving local search (shown:
two data-bit decisions for users 2 and 3 are changed simultaneously).
3.2. Problem description

The multi-user, non-convex and integer power control
problem in DSL on subcarrier cAC is that of maximizing the
number of users' data-bits and minimizing their transmit
powers, constrained by the technology and regulatory
restrictions Qc, formulated as [10]

minimize
frc jpcðrcÞAQcg

fwc ðrcÞ ¼ f
w
c ðpcðrcÞÞ; ð2Þ

which is combinatorial only in a wide sense [23, Section
4.4] due to the existence of a continuous (yet nonconvex)
relaxation. Furthermore, this problem is always feasible due
to the feasibility of r¼ 0. We select the integer bit allocation
rc as our variables instead of the uniquely coupled power
allocation pc used above, which simplifies the later algo-
rithm design and reflects the bit-loading [18] process
applied in practice. Another alternative choice would have
been to consider both, a discrete number of data-bits and
continuous power variables, as required by the general-
purpose mixed-integer solver in [11] applied in Section 6. In
the rest of the paper we study the approximate solution of
the problem in (2) and therefore omit subcarrier indices c
for the ease of notation, based on the understanding that
different problem instances may reflect different subcar-
riers. The considered search space is �uAUB¼ frjruAB;
8uAUg, that is, the constraint pcðrÞAQc is not explicitly
taken into account. The objective value of an allocation r
violating this constraint is by definition infinite, which
prevents our later proposed algorithms from traversing
infeasible search regions. As previously mentioned, objec-
tive evaluation and feasibility checking necessitate the
solution of a linear system of equations [18]. Hence, as
our focus is on computational complexity and reproduci-
bility we will use the number of objective evaluations as our
complexity metric/stopping criterion for the comparison of
search heuristics instead of runtime or memory complexity.

The optimal solution of the problem in (2) was shown to
have polynomial complexity in [10]. However, an integer
solution for over ten users was found intractable for
problem-specific as well as general-purpose branch-and-
bound-based schemes [16,17]. Furthermore, the number of
these per-subcarrier problems is in the order of thousands
in the newest generations of DSL technology, and is
expected to be re-optimized frequently upon changes in
the DSL network (e.g., when DSL users turn their modems
off). Altogether this motivates the following work on fast
heuristics.
4. Search principles, base heuristics, and analysis

In order to provide a self-contained description and
motivation of the later proposed stochastic heuristics we
will first review the base-heuristics suggested in [10],
classify them into three categories as illustrated in Fig. 1,
and analyze their performance on a representative set of
DSL power control problems. The first type in Fig. 1(a)
represents constructive schemes where a feasible solution
r to a subproblem in (2) is built up by iteratively adding
one bit to the already allocated data-bits ru of one of the
users uAU . Constructive sequential decision algorithms as
depicted in Fig. 1(b) build up a complete solution r by
sequentially allocating r1 data-bits to user u¼ 1, r2 data-
bits to user u¼ 2, and so forth. The third type of heuristics
represents local search heuristics where an allocation r is
improved by searching for an allocation with better
objective value in the local “environment” of r, where
the exact meaning of this environment will be introduced
shortly, cf. Fig. 1(c).
4.1. Base heuristics

4.1.1. Joint Greedy Optimization (JOGO)
The first base-heuristic, inspired by the Clarke–Wright

heuristic for the traveling salesman problem (TSP) [24], is
an iterative, joint greedy bit allocation scheme which will
be used throughout as our reference heuristic, cf. the
illustration in Fig. 1(a) and Algorithm 1. It starts the search
from r¼ 0 and in each iteration calculates the extra cost
f ð~rÞw� f ðrÞw for increasing one user's number of data-bits
by one, i.e., ~ru ¼ ruþ1; ~r i ¼ ri; 8 iAU\fug, for all users uAU ,
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cf. Lines 3–6. The allocation r of the previous iteration is
updated by increasing the number of data-bits of the user
which leads to the lowest extra cost, cf. Line 7. Ties are
broken by picking the allocation with the lower sum-
power. These steps are repeated until no update as defined
above with negative extra cost exists.

Algorithm 1. Joint Greedy Optimization (JOGO), adapted
from [10].

1:
 Initialize r, δn ¼ 0, f prev ¼ fwðrÞ

2:
 while δnr0 do

3:
 for u¼ 1;…;U do

4:
 if (pAQjruðpÞ ¼ ruþ1; riðpÞ ¼ ri , 8 iAU\fug,

5:
 then δu ¼ fwðpÞ� f prev
6:
 else δu ¼1

7:
 un ¼ argminu ¼ 1…Uδu; δ

n ¼ δun
8:
 if δnr0 then run ¼ run þ1; f prev ¼ f prevþδun
4.1.2. Sequential Greedy Optimization (SEGO)
The second, less complex base-heuristic is the Sequen-

tial Greedy Optimization (SEGO) scheme where users pick
their data-bits ru in sequence, cf. Fig. 1(b) and Algorithm 2.
The user-sequence is determined by the ratio of the
weights associated with the data-bits and transmit power
respectively, cf. Line 2. Each user u then picks its data-bits
ru and joint power allocation p that minimizes the joint
objective fwðrÞ, cf. Line 4. While JOGO has a complexity per
bit-step of OðU3Þ due to the solution of a linear system of
equations (assuming Gaussian elimination is used), the
complete complexity of SEGO is only OðU2Þ as each user
only evaluates up to B̂ bit allocation possibilities. The main
feature in such a sequential algorithm is the sequence in
which the users commit to their data-bits. In Section 5.2.1
we will present an extension of SEGO where the user-
sequence is randomized and selected together with the bit
allocation.

Algorithm 2. Sequential Greedy Optimization (SEGO),
adapted from [10].

1:
 Initialize r

2:
 Determine sequence sARU by ordering users in descending

order of �wu=ŵu
3:
 for u¼ s1;…; sU do

4:
 ½ru ;p� ¼ argminfru AB;pAQjrðpÞ≽rgffwðpÞg
1 The case rn ¼ 0 where the suboptimality is undefined was not
encountered in our simulations and is therefore neglected.

2 In this work we are not considering another network topology
prone to the near–far problem, that is a mixed central office and cabinet
DSL deployment.
4.1.3. Local search (LS)
The third base-heuristic is a simple local search (LS),

which aims to iteratively improve a given solution r, cf.
Fig. 1(c) and Algorithm 3. A specific search scheme is
determined by the definition of a neighborhood set
N ðrÞDB around r from which the solution evaluated next
is taken, cf. [25]. A local optimum rn can then be defined as
an allocation with fwð~rÞZ fwðrnÞ, 8 ~rAN ðrnÞ, i.e., there is
no allocation with strictly better objective value in the
neighborhood of rn. Here we restrict ourselves to two
possible neighborhood definitions [10]: (a) a one-step
neighborhood N ð1ÞðrÞ where the data-bits ru of exactly
one user u are increased or decreased by one; and (b) a
two-step neighborhood N ð2ÞðrÞ+N ð1ÞðrÞ where addition-
ally two distinct users can independently increase or
decrease their data-bits ru; r ~u , u; ~uAU, by one. Note that
when we search through N ð2ÞðrÞ we start searching
through N ð1ÞðrÞ first. This has an impact on the obtained
solution depending on the search strategy, where we
restrict ourselves to two possible strategies as described
in Lines 4 and 5 of Algorithm 3, respectively. In the first
option an allocation r is updated by the improving alloca-
tion ~rAN ðrÞ which is encountered first, while in the
second option the whole neighborhood N ðrÞ is searched
and the best allocation chosen for the update of r. We will
refer to these two LS strategies as “first-improving” and
“best-improving” strategies [25, Chapter 8], respectively. In
[10] the size jN ðrÞj of the neighborhood under the two
described neighborhood definitions is shown to grow as
OðUÞ. An empirical discussion about the impact of the
number of users U and the initialization point r on the
search complexity will be given in Section 6.

Algorithm 3. Local search (LS) based bit allocation.

1:
 Initialize r

2:
 repeat

3:
 Update r by

4:
 (a) the first-found ~rAN ðrÞ with fwð~rÞo fwðrÞ, or

5:
 (b) any ~rAN ðrÞ with fwð~rÞo fwðrÞ, fwð~rÞr fwðrÞ, 8rAN ðrÞ

6:
 until Convergence
4.2. Analysis of base-heuristics

We analyze our base heuristics on a set of 84 6-user
very high speed DSL (VDSL) scenarios with subscriber line
lengths of 200 m, 400 m, 600 m, and 800 m, respectively,
and a subset of subcarriers ~C � C, cf. Section 6 for details on
the simulation setup. We compute the suboptimality of an
allocation r compared to the optimal solution rn as1

suboptimality¼ ððfwðrÞ� fwðrnÞÞ=� fwðrnÞÞ � 100 ½%�. Note
that all base-heuristics are guaranteed to give a solution
with negative objective value if initialized by r¼ 0, cf. the
stopping criterion in Line 2 of Algorithm 1 and the initial
objective value fwð0Þ ¼ 0. This leads to a guaranteed
suboptimality between 0 and 100%. The average subop-
timality of the base heuristic over subcarriers ~C and the 84
scenarios is 3.7%, with a maximum suboptimality of 39.3%.
Table 1 shows the average suboptimality over chosen
subcarriers ~C for scenarios that are worst in this respect.
We find that the base-heuristic JOGO gives optimal results
in all scenarios where the line-lengths are equal. As seen in
Table 1 the highest suboptimality occurs in classical “near–
far” type of scenarios, that is, scenarios where some line-
lengths are substantially shorter than others.2 This type of
scenarios is widely accepted as the main application focus
for power control in DSL.

As an example we regard the worst scenario (the first
line in Table 1) and a specific subcarrier at approx.
9.26 MHz, i.e., one user is at 200 m, one at 400 m, and
4 lines at 800 m distance from the central telephone office,
respectively. The constructive greedy algorithm JOGO only
assigns data-bits to the nearest users, more precisely



Table 1
Worst-case scenarios for greedy Algorithm 1 (JOGO) out of any 6 user
VDSL scenarios using given line-lengths.

# Users with line-lengths of … Suboptimality of sum-objective
over subcarriers ~C w/o (w/) local
search (%)

200 m 400 m 600 m 800 m

1 1 0 4 13.1 (1.0)
2 0 0 4 10.0 (2.1)
0 1 1 4 9.3 (1.9)
1 0 5 0 9.0 (8.4)
0 2 0 4 8.9 (1.1)

Table 2
Summary of algorithms applied to the problem in (2).

Algorithm Abbr. Reference

Deterministic
Solver “Couenne” COU [11,12]
Branch-and-bound OPT [16, Algorithm 1]
Joint Greedy Optimization JOGO [10], Section 4.1
Sequential Greedy

Optimization
SEGO [10], Section 4.1

Local Search LS [10], Section 4.1
Rollout Algorithm RA [27], Section 5.2.2

Stochastic
Greedy Rand. Adapt. Search

Proc.
GRASP [25, Chapter 8], Section 5.1

Iterated Local Search ILS [25, Chapter 11], Section
5.3.2

Simulated Annealing SA [25, Chapter 10], Section
5.3.1

Ant Colony System ACS [26], Section 5.2.3
Randomized SEGO rSEGO [7], Section 5.2.1
Randomized LS rLS Section 6.1
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r¼ ½9;4;0;0;0;0�. This has to be compared to the optimal
allocation rn ¼ ½6;4;3;2;2;2�, and implies a suboptimality
of JOGO of more than 31%. In this example SEGO only
assigns non-zero data-bits to the nearest user and incurs a
suboptimality of over 15% when the user-sequence starts
with this nearest user. Having the greedy base-heuristics
followed by LS does not improve the suboptimality beyond
15%. For instance, initializing r3 ¼⋯¼ r6 ¼ 0 we need to
assign r2 (the second-nearest user) a value between 5 and
12 in order to be in the “basin of attraction” for local search
to the optimum, independent of the (feasible) number of
data-bits r1 (assigned to the nearest user). Clearly, some
non-greedy steps are necessary to bring us into this region,
motivating the GRASP-like scheme [25, Chapter 8] in
Section 5.1. Furthermore, we note that any user-sequence
in SEGO which starts with any of the most distant users
would have lead to an optimal result after subsequently
applying LS in this example. This worst-case example
(among the selected DSL scenarios) motivates a randomi-
zation of the user-sequence as applied in one of our
heuristics, proposed in Section 5.2.1.

Basically one of the three approaches will be applied to
overcome the shortcomings of the two purely greedy
schemes, namely (a) the extension of JOGO through purely
random decisions (a special case of GRASP [25, Chapter 8]),
(b) the randomization of the decision-sequence in SEGO
(using an ant-colony system [26]), and (c) randomized
local search (e.g., iterated local search [25, Chapter 11]).

5. Advanced search algorithms

In the following we present detailed descriptions of
heuristics implementing the extensions suggested in
Section 4.2 for the power control problem in (2) which
are partly inspired by well-known meta-heuristics, cf. the
overview of all studied algorithms in Table 2. The pre-
sentation of the proposed algorithms follows the three
search principles introduced in Section 4: GRASP will be
introduced in Section 5.1 as an extension of the greedy
base heuristic JOGO using randomization (cf. Fig. 1(a)).
Rollout algorithms (RA), rSEGO, and ant colony system
algorithms are deterministic and randomized sequential
decision making algorithms (cf. Fig. 1(b)), and described in
Section 5.2. Randomized local search, simulated annealing,
as well as iterated local search can be classified as
randomized variants of the local search scheme in
Algorithm 3 (cf. Fig. 1(c)), and are presented in Section 5.3.
Note that for simplicity a parameter K will denote the
number of iterations in all these algorithms, although the
already mentioned stopping criterion based on the number
of objective evaluations is used in all our simulations.
Furthermore, the best found solution (the “incumbent”) is
initialized at rn ¼ 0 or by the reference algorithm JOGO.

5.1. Greedy Randomized Adaptive Search Procedure (GRASP)

GRASP [25, Chapter 8] is a modification of greedy
search through randomizing the data-bit decisions, cf.
Algorithm 4. In Lines 4–12 a greedy bit allocation
similarly as in JOGO is performed. However, differently
to JOGO, in Line 10 a random non-greedy selection is
made. An additional parameter β determines the trade-
off between greedy (β¼ 0) and purely random search
(β¼ 1). This parameter is randomly sampled in each
iteration based on the average objective value gi experi-
enced so far under parameter i from the set
fβjg; jAM¼ f1;…;Mg, M meaning the number of values
among which we select β, cf. Lines 3 and 15 of
Algorithm 4, respectively. Note that a set of pre-
selected parameter values makes the algorithm self-
adaptive to the actual problem instance. For example, in
a crosstalk-free scenario pure greedy decisions will
experience the best average objective, and the strategy
β¼ 0 will hence be selected more frequently. Differ-
ently, near–far scenarios require less greedy decisions,
meaning that higher β values will be selected most of
the time. The experienced objective values gi; iAM, are
initialized by the lowest (i.e., best) possible objective
value �f ¼ � B̂ ∑uAU �wu, which comes from the fact that
the transmit power is lower-bounded by zero and the
number of data-bits upper-bounded by B̂, cf. the defini-
tion of the objective in (1). A single run of allocating data-
bits to users (Lines 4–12) terminates when a purely greedy
decision would increase the objective value, i.e., δmin40,
cf. Lines 4, 7, and 9. The free parameters to be chosen
are the LS strategy, the definition of the neighborhood
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set (cf. Line 13), and the randomization parameters
βi; iAf1;…;Mg.
Algorithm 4. GRASP, adapted from [7].

1:
 Initialize r¼ 0, rn , δmin ¼ 0, f prev ¼ fwðrÞ, βARM , βiA ½0;1�,

gi ¼ �f , 8 iAM¼ f1;…;Mg, K

2:
 for k¼ 1;…;K do

3:
 Set β¼ βin , where inAf1;…;Mg is sampled from the

distribution

Pi ¼
~gi

∑jA f1;…;Mg ~gj
; 8 iAM; ð3Þ

~gi ¼ max
iA f1;…;Mg

fgig�gi ; 8 iAM; ð4Þ
min
4:
 while δ r0 do
5:
 for u¼ 1;…;U do

6:
 if (pAQjruðpÞ ¼ ruþ1; riðpÞ ¼ ri ; iAU\fug,

7:
 then δu ¼ f ðwÞðrÞ� f prev
8:
 else δu ¼1

9:
 δmin ¼minuAU fδug, δmax ¼maxuAU fδug

10:
 Uniformly sample a user un from the set fuAUj

11:
 δurð1�βÞδminþβδmaxg

12:
 if δminr0 then run ¼ run þ1; f prev ¼ f prevþδun
13:
 Local search starting at r and ending in ~r , cf. Algorithm 3

14:
 Update incumbent rn ¼ ~r if fwð~rÞo fwðrnÞ

15:
 Update the average gin with the newest value f prev
5.2. Advanced sequential decision making algorithms

In Section 4.2 we identified the potential of changing the
sequence of users in making data-bit decisions, cf. Fig. 1(b)
for an illustration of the general search principle. This idea
will be turned into an algorithm in Section 5.2.1. Differently,
although users make bit-decisions sequentially, they may still
take the influence their decision has on subsequent users
into account. This idea is followed in Section 5.2.2. Another
approach applied in Section 5.2.3 is to repeatedly run
through the sequential decision making process, thereby
learning from beneficial data-bit decisions.

5.2.1. Randomized SEGO (rSEGO)
The heuristic rSEGO is a modification of SEGO in

Section 4.1 through the randomization of user-sequence
as well as data-bit decisions, cf. Algorithm 5. More pre-
cisely, the bit allocation is sequential as in SEGO (cf. Line
5), the user-sequence is adaptive and based on an ant
colony system [26] (cf. Lines 9–15), and also the per-user
bit allocation is randomized similarly as in GRASP above
(cf. Line 7). Note that this approach differs from the
version of ant colony systems in proposed Section 5.2.3,
where data-bit decisions are learned directly.

Algorithm 5. Randomized SEGO (rSEGO), adapted from [7].

1:
 Initialize rn , K , K , values ~τuðiÞ; 8u; iAU, q0, β, ρ, user-order

sðk ÞARU
2:
 for k¼ 1;…;K do {/niterationsn/}

3:
 for k ¼ 1;…;K do {/nant runsn/}

4:
 Set rðk Þ ¼ 0, ~U ¼ U, Uniformly sample sðk Þ1 AU

5:
 for i¼ 1;…;U do {/nsequential decisionsn/}

6:
 Set u¼ sðk Þi and compute

fmin ¼ min
frðk Þu ABjpðrðk Þ ÞAQg

ffwðrðk ÞÞg;
fmax ¼ max
frðk Þu ABjpðrðk Þ ÞAQg

ffwðrðk ÞÞg
7:
 Uniformly sample rðk Þu from the set

frðk Þu ABj pðrðk ÞÞAQ; fwðrðk ÞÞr ð1�βÞfminþβfmaxg

8:
 if ioU then

9:
 Remove u¼ sðk Þi from the set of possibilities ~U

10:
 Uniformly sample qA ½0;1�

11:
 if qoq0 then

12:
 Set sðk Þiþ1 ¼ argmaxjA ~U f~τuðjÞg

13:
 else

14:
 Sample sðk Þiþ1 ¼ jAU from the distribution

Puðj ~U�� �¼
~τuðjÞ

∑lA ~U ~τuðlÞ
if jA ~U ;

and 0 otherwise;

8><
>:
15:
 Update ~τuðsðk Þiþ1Þ ¼ ð1�ρÞ � ~τuðsðk Þiþ1Þ

16:
 Update rðk Þ by a local optimum ~r , through LS in Algorithm

3 starting at rðk Þ using neighborhood N ðrÞ

17:
 k

n ¼ argmink ¼ 1;…;K ff
wðrðk ÞÞg
18:
 Update the incumbent rn ¼ rðk
n

Þ if fwðrðk
n

ÞÞo fwðrnÞ

19:
 Update ~τ

sðk
n

i
Þ
ðsðk

n

iþ1ÞÞ, i¼ 1;…;U�1, as
~τuðjÞ ¼ ð1�ρÞ � ~τuðjÞþρ � ðf̂ � fwðrðkn ÞÞÞ:
In the following we describe the process of allocating
data-bits more closely. We define a set ~U that includes the
indices of those users that have not yet made a bit
allocation. A user iA ~U is assigned a corresponding value
~τuðiÞ that automatically decreases over time (cf. Line 15)
and is updated over iterations (cf. Line 19) based on the
best solutions found (cf. Line 17). More precisely, defining
the highest (i.e., worst) objective value as f̂ ¼∑uAUŵup̂u

and a coefficient ρA ½0;1� for calculating an exponential
moving average, the values ~τuðjÞ are updated in Line 19.
The decision on the subsequent user is made determinis-
tically (cf. Line 12) or by sampling according to these
values, cf. Line 14, based on the threshold q0. Differently to
the original ACS the decision on the data-bits ru is made
greedily, cf. Line 7.

5.2.2. Rollout Algorithm (RA)
RAs [27] fall into the category of sequential decision

making schemes, cf. Fig. 1(b) and Algorithm 6. For each
user u we test any possible bit allocation bAB, set ru ¼ b,
and run our base heuristic in Algorithm 1 to determine the
allocations ri; i¼ uþ1;…;U, and the heuristic cost δðbÞ of
user u's allocation, cf. Line 5. User u then chooses the
allocation ru which minimizes δðruÞ. An attractive feature
of RA is that there are no parameters to be tuned and the
only choice is that of the base heuristic to be used.
Furthermore, it necessarily dominates the base heuristic
in performance as the base heuristic is run at iteration
u¼ 1 using all possible bit allocations r1AB, hence also
including the one the base heuristic would give as a result
for user 1.

Algorithm 6. Rollout Algorithm (RA).

1:
 Initialize r¼ 0, rn , decision value ΔðbÞ; 8bAB

2:
 for u¼ 1;…;U�1 do

3:
 Set r0 ¼ r

4:
 for all bAB do
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5:
 Obtain ~r and ΔðbÞ ¼ fwð~rÞ by Algorithm 1 with Ustart ¼ uþ1,
starting at r¼ r0, where r0u ¼ b
6:
 Update incumbent rn ¼ ~r if fwð~rÞo fwðrnÞ

7:
 Set ru ¼ argminbABfΔðbÞg
5.2.3. Ant Colony System (ACS)

ACS is a nature-inspired meta-heuristic originally
applied to solve the TSP [26]. We now describe a modified
ACS algorithm for the discrete bit allocation problem in (2).
A number of K tentative solutions are built sequentially by
deciding how many data-bits to assign to users u¼ 1;…;U,
cf. Fig. 1(b) and Lines 3–12 of Algorithm 7. These are
referred to as “ant runs” in ACS terminology. The user-
sequence in our simulations is generated by sorting users
according to their distance (subscriber line length). A key
distinction to other heuristics is the reinforcement of the
decisions by assigning a quality-value τuðbÞ to each of the
jBj � U possible decisions, bAB;uAU . The sequential deci-
sions are made by sampling according to a given probability
distribution in Line 10 of Algorithm 7. These probabilities
depend on the one hand on the decision values τuðbÞ for
user u (see Line 11 for the corresponding update proce-
dure), and on the other hand on the heuristic information
ηuðb; rÞ (defined in Line 10), which represents the modified
cost of a bit allocation decision to user u. Note that the
subset B̂ of available bit-allocation decisions in Line 10 can
either be chosen according to the maximum number of
bits as B, or more restrictively from the subset fbjrA
�uAUB; ru ¼ b; (pðrÞAQg. The latter set simply consists of
all data-bit decisions b for user u that lead to feasible power
allocations. However, as power increases with the number
of data-bits, the calculation of this subset necessitates to
search the largest feasible number of data-bits for user u,
which is no extra work when the heuristic info in Line 10 is
used. In our simulations in Section 6 we will compare the
two definitions of B̂ to each other in terms of the resulting
performance and complexity, with or without the usage of
heuristic information ηuðb; rÞ.

Algorithm 7. Ant Colony System (ACS) based bit allocation.

1:
 Initialize rn , K , K , values τuðbÞ; 8bAB;uAU , q0, ρ

2:
 for k¼ 1;…;K do {/niterationsn/}

3:
 for k ¼ 1;…;K do {/nant runsn/}

4:
 Set rðk Þ ¼ 0

5:
 for u¼ 1;…;U do {/nsequential decisionsn/}

6:
 Uniformly sample qA ½0;1�

7:
 if qoq0 then

8:
 Pick rðk Þu ¼ b based on b¼ argmaxbA B̂ fτuðbÞηuðb; rÞg

9:
 else

10:
 Sample rðk Þu ¼ b from Puðbjrðk ÞÞ given as

Pu bjrð Þ ¼
τuðbÞ � ηuðb; rÞ

∑ ~b A B̂ τuð ~bÞ � ηuð ~b; rÞ
if bA B̂ ;

0 otherwise;

8><
>:

where ηuðb; rÞ ¼ f̂ � fwð~rÞj ~r i ¼ ri ; 8 iAU\fug; ~ru ¼ b
11:
 Update τuðrðk Þu Þ as τuðbÞ ¼ ð1�ρÞ � τuðbÞ

12:
 Optional: If pðrðk ÞÞAQ then update rðk Þ by a local optimum

~r starting Algorithm 3 at rðk Þ using N ðrÞ

13:
 k

n ¼ argmink ¼ 1;…;K ff
wðrðk ÞÞg
14:
 Update the incumbent rn ¼ rðk
n Þ if fwðrðk

n ÞÞo fwðrnÞ
15:
 Update τuðbÞ, 8uAU, as

τuðbÞ ¼
ð1�ρÞ � τuðbÞþρ � ðf̂ � fwðrbestÞÞ if rbestu ¼ b;
τuðbÞ otherwise;

(

either using (a) rbest ¼ rðk
n Þ , or (b) rbest ¼ rn
After a data-bit decision ru ¼ b for user u, the value τuðbÞ
is updated in Line 11. After all K runs of making the
sequential data-bit decisions, a best allocation rbest is
found either as the allocation giving the best objective
value in the current iteration or in all iterations so far.
Based thereupon, a global value update is performed in
Line 15 in Algorithm 7, using a coefficient ρ in the
exponential moving average calculation. The objective
value of a solution constructed by the sequential decisions
is not restricted in sign. Therefore we shift the objective
values in Lines 10 and 15 by f̂ ¼∑uAUŵup̂

u in order to be
able to use them as a scaled probability mass function in
Line 10. Furthermore, we propose to initialize the decision
values by large values τuðbÞ ¼ f̂ � �f , which gives meaningful
values also for the special case where ŵu ¼ 0; 8uAU (the
pure maximization of data-bits), and where �f is defined in
Section 5.1. In order to obtain a trade-off between explora-
tion and exploitation a random value qA ½0;1� is sampled
in Line 6 of Algorithm 7, where the decision b is based on a
greedy decision rule in Line 8 when qoq0, and based on
the probabilistic sampling in Line 10 otherwise. Note that
the value q0 ¼ 1 selected for performance reasons in
Section 6.2 means that only greedy decisions are taken.

In the definition of Algorithm 7 we have mainly
followed the meta-heuristic description as outlined in
[26]. Problem-specific adaptions were made for determin-
ing the feasible neighborhood B̂ , for defining the decision
value updates based on a shifted objective function, and
for specific parameter settings. The free parameters to be
defined are the decay coefficient ρ in the local and global
pheromone updates, the threshold q0 for determining the
decision strategy, the number of virtual ants K , the local
search parameters (neighborhood and local search strat-
egy) if Line 12 in Algorithm 7 is used, the update method
in Line 15, and the set B̂ in Line 10, cf. the discussion
above. Note that the local value updates diversify the
solutions produced by the virtual ants [26], cf. the
“temperature value” described in the next section.

5.3. Advanced local search schemes

The local search scheme in Section 4.1.3 may be trapped
in a local optimum depending for instance on the initializa-
tion, cf. the search principle in Fig. 1(c). One such example
has already been given in Section 4.2 where LS is initialized
by a greedy base heuristic and eventually converges to a
local optimum only. Similar to the principle of allowing
non-greedy steps used in Section 5.1, in Section 5.3.1 we
will allow LS to take non-improving steps in a simulated
annealing framework. Differently, the idea of repeatedly
restarting the LS at different starting points is followed in
Section 5.3.2. As a simple base-line for our stochastic
heuristics we consider a randomized local search (rLS)
scheme where the LS algorithm is reinitialized at random
starting points r uniformly drawn from the set �uAUB.
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5.3.1. Simulated annealing (SA)
SA [28, 25, Chapter 10] is a local search method in the

spirit of Fig. 1(c) with the potential of escaping local
optima by probabilistically allowing for “uphill” moves,
cf. Algorithm 8 for a basic description. The neighborhood
N ðrÞ at an allocation r is sampled uniformly in Line 4. The
probability of accepting the sampled allocation and mov-
ing from r to ~r is given in Line 5. Note that the neighbor-
hood definitions in Section 4.1 ensure that ~rA�uAUB
whenever rA�uAUB, but pð~rÞ might not be in the feasible
set Q. We therefore use the common understanding that
fwð~rÞ ¼1 if ~r =2Q. Parameter T is the “temperature” which
regulates the probability of uphill moves. In the basic
Algorithm 8 we use a simple geometric update schedule
for T , cf. Line 7. The free parameters are the definition of
the neighborhood N ðrÞ, the initial temperature T , and the
parameter γ for updating the temperature in Line 7 of
Algorithm 8.

Algorithm 8. Simulated annealing (SA) based bit allocation.

1:
 r¼ 0, Optional: Use Algorithm 1to initialize r

2:
 Initialize, rn , T , γ, K

3:
 for k¼ 1;…;K do

4:
 Uniformly sample ~r from the neighborhood N ðrÞ

5:
 Assign r¼ ~r with probability Prð~rÞ defined as

Pr ~rð Þ ¼ exp �1
T

fw ~rð Þ� fw rð Þ� �� �
if fwð~rÞ� fwðrÞ40;

1 otherwise:

8<
:

6:
 Update the incumbent rn ¼ r if fwðrÞo fwðrnÞ

7:
 Update the temperature T ¼ T � γ
5.3.2. Iterated local search (ILS)

ILS [25, Chapter 11] is a scheme which iteratively runs
local searches initialized at different starting points and
thereby performs a random walk in the space of local
optimal solutions, cf. Algorithm 9. More precisely, the basic
algorithm repeatedly performs a local search and accepts
the new local optimum based on a criterion identical to
that in SA, cf. Lines 4 and 5 in Algorithm 9, respectively.
The starting point for the next local search is determined
by a perturbation of the current local optimum, cf. Line 7.
This perturbation is one of the key points of the algorithm
and performed by uniformly sampling one of the two

alternative sets: the set N ð2ÞðrÞ or the set N ðUstepsÞðrÞ where
the elements of r are reduced by up to U data-bits, cf. Line
7. This perturbation set has the advantage that the per-

turbed allocation produced by sampling N ðUstepsÞðrÞ
remains feasible if r was feasible.

Algorithm 9. Iterated local search (ILS) based bit allocation.

1:
 rð1Þ ¼ 0, Optional: Use Algorithm 1 to initialize rð1Þ
2:
 Initialize r¼ rð1Þ , rn , T , γ, K

3:
 for k¼ 1;…;K do

4:
 Search local optimum ~r starting at r as in Algorithm 3

5:
3

Acceptance: Assign rðkþ1Þ ¼ ~r with probability PrðkÞ ð~rÞ defined in
Line 5 of Algorithm 8, otherwise assign rðkþ1Þ ¼ rðkÞ
We used release 0.2.2 and default parameters except the time limit
6:
 Update incumbent rn ¼ rðkþ1Þ if fwðrðkþ1ÞÞo fwðrnÞ

a

7:
s sp
Perturbation: Obtain r by uniformly sampling

N ð2ÞðrÞ ¼ ~rA ∏
uAU

Bj~ru ¼ ru71; ~ru ¼ ru 71; ~r i ¼ ri ; 8 iAU\fu;ug;uau ;u;uAU
� �

;

or

N ðUstepsÞðrÞ ¼ ~rABj~ru ¼ ru�ku; kuZ0; 8uAU; ∑
uAU

ku ¼min U; ∑
uAU

ru

� �� �
;

8:
 Update the temperature T ¼ T � γ
The free parameters in the presented basic implemen-
tation of ILS are the initialization method in Line 1 of
Algorithm 9, the neighborhood N ðrÞ used for local search,

the perturbation set (N ð2ÞðrÞ or N ðUstepsÞðrÞ), the local
search strategy, the initial temperature T , and the para-
meter γ for updating the temperature. We refer to [25,
Chapter 11] for suggestions of possible modifications of the
described ILS scheme.

6. Simulations and discussion

In Section 6.1 we describe the methodology and simu-
lation parameters for the following selection of algorith-
mic parameters in Section 6.2. There we also compare the
exact suboptimality of all heuristics on medium-scale
problems, that is, with 6 DSL users only. In Section 6.4
we will then investigate the average performance of all
heuristics in more realistic scenarios with 30 users, before
discussing the obtained results in Section 6.5.

6.1. Simulation setup and methodology

The parameters for our xDSL simulator available in [22]
were selected according to the ETSI very high speed DSL
(VDSL) standard [29], with upstream band plan 997-M1x-M
(containing 1635 subcarriers), background noise comprising
ETSI VDSL noise A added to a flat background noise at
�140 dBm/Hz, and hypothetical parameters as an SNR-gap
[18] of 12.8 dB and B̂ ¼ 16 based on our later comparison to
the optimal branch-and-bound results in [16]. For comparing
our single-carrier heuristics we choose a subset of subcarriers
~C ¼ 1;51;…;1601, and construct our network scenarios using
a set of specified subscriber line lengths L¼ f200;400;
600;800g m, considering all U�combinations with repeti-
tions. In order to still be able to compare to optimal schemes
as in [16], for the parameter setting and initial simulations in
Sections 6.2 and 6.3 we restrict ourselves to U ¼ 6 users,
which results in ðjLjþU�1Þ over U generated network
scenarios. Note that this allows us to identify scenarios where
the given algorithms perform badly. Such scenarios were used
to initially set the algorithmic parameters, cf. Section 6.2.
Based on these settings various parameter changes were
selected and the impact on the average performance studied
by Monte-Carlo simulation. For analyzing randomized algo-
rithms we make 100 repetitions and present mean results
as well as 95% confidence intervals according to a t-test.
As a benchmark for all our algorithms we use “Couenne”
[11,12], a free branch-and-bound based solver for nonconvex
mixed-integer problems.3 In order to study networks with a
ecified in the simulation results, the priority level of continuous
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Fig. 2. Average data-bits for various 6 user VDSL scenarios under identical
weights w˘ u ¼w; 8uAU .
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Fig. 3. Comparison of complexity metrics.

Table 3
Parameter settings.

Algorithm Selected parameter settings

Deterministic
JOGO With/without LS, N ðrÞ ¼N ð2ÞðrÞ, first-improving

strategy
SEGO With/without LS, N ðrÞ ¼N ð2ÞðrÞ, first-improving

strategy
LS N ðrÞ ¼N ð2ÞðrÞ, first-/best-improving strategy
RA With/without LS, N ðrÞ ¼N ð2ÞðrÞ, first-improving

strategy

Stochastic
rLS N ðrÞ ¼N ð2ÞðrÞ, first-improving strategy
rSEGO β¼ 0:75, uses local search with N ðrÞ ¼N ð2ÞðrÞ and first-

improving strategy, K ¼ 5, ρ¼ 0:99, q0¼0.2, iteration-
best global value update

GRASP β¼ ½0:75;1�, N ðrÞ ¼N ð2ÞðrÞ, first-improving strategy
ILS Initialization of rð1Þ using Algorithm 1, N ðrÞ ¼N ð2ÞðrÞ,

first- improving strategy, T ¼ 10, γ ¼ 0:99, perturbation

set N ð2ÞðrÞ
SA N ðrÞ ¼N ð2ÞðrÞ, T ¼ 10, γ ¼ 0:99
ACS ρ¼ 0:99, B̂ ¼ B, q0 ¼ 1, K ¼ 20, no heuristic info, using

local search with N ðrÞ ¼N ð2ÞðrÞ and first-improving
strategy, iteration-best global value update
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larger number of users, in Section 6.4 we consider 30-user
scenarios. The number of combinations of assigning the four
line-lengths to each user is in the thousands. Therefore we
randomly assign the four line-lengths to the 30 users. While
for 6 users we are able to compute the optimum of the
problem in (2), for 30 users we state the performance
improvements compared to the base heuristic JOGO. As in
[16] we use equal weights for all users, set to ŵu ¼
1=U; �wu ¼ 1; 8uAU, which leads to a maximum sum of
data-bits in the 6-user scenarios, cf. Fig. 2.

We make the practical assumption that there is a
restriction in simulation time for solving the subproblems
in (2). Furthermore, in order to make our results repro-
ducible for future research we use the number of power
evaluations pðrÞ by solving a linear matrix equation [15] as
the stopping criterion for all considered stochastic search
heuristics. In Fig. 3 we relate the number of evaluations to
the simulation times of a selection of our algorithm
implementations4 for an example with U ¼ 60 users, uni-
formly distributed over the four subscriber line lengths,
and regarding the lowest subcarrier at approx. 3 MHz. The
metric can be seen to preserve the comparability among
different heuristics. For the above described parameter
setting we assume a limit of 103 power evaluations for all
stochastic algorithms. This low value is justified by the
large number of subproblems that has to be solved in
practice (e.g., in the order of 105 in decomposition-based
(footnote continued)
variables (1001), thereby enforcing branching on the integer data-bit
variables, the number of convexification points (10), and the artificial
cutoff parameter (0).

4 The algorithms were coded in Matlab and run on a 2.4 GHz quad-
core Windows XP system with 3.5 GB RAM.
large-scale multi-carrier power control [10]) and the
sufficient performance certain algorithms already show
for small complexity budgets in networks with few users.

We initialize the incumbent solution (but not the initial
starting-point r¼ 0) of all methods by the result of the
base heuristic JOGO in Algorithm 1. As this heuristic is
guaranteed to give a solution with negative objective
value, we have that also all other heuristics will produce
a solution rn with negative objective value fwðrnÞ and we
can compute the suboptimality of all algorithms as
described in Section 4.2.

6.2. Parameter selection

In the following we describe the chosen parameters,
some insights, and the performance results for the 6-user
VFSL scenarios, cf. Tables 3 and 4, respectively. The values
reported in Table 4 marked by a footnote ‘a’ reflect the
applied stopping criterion (complexity budget) and
exclude the incumbent initialization using Algorithm 1.
As previously mentioned, the choice of parameters is
based on the Monte-Carlo simulation in 6-user networks
where optimal solutions are computable.

Comparing the two greedy randomized schemes rSEGO
and GRASP, both, their performance metrics as well as the
scenarios where their performance is suboptimal are
found to be similar. GRASP is based on JOGO and we found
that it takes a parameter β¼ 1 to remedy the shortcomings
of JOGO in the example made in Section 4.2.5 Hence, we
used parameters βAR2, β2 ¼ 1 as we found that selecting a
5 The users' subscriber lines s are certainly not identical in their
transmission parameters in practice. Still, the example suggests β to be
set to a large value in near–far scenarios in order to overcome the
shortcomings of a greedy search.



Table 4
Simulation results on suboptimality and complexity of various heuristics on the 84 6-user VDSL scenarios with a subset of 33 subcarriers.

Algorithm Mean subopt. [%]
(per subcarr.)

Max. subopt. [%] of sum-obj.
over subcarr. ~C

Mean op.-count [�103] or
sim.-time per subcarr.

Deterministic
OPT 0.0 0.0 73.28
COU 43.216 87.751 1 s

3.243 7.286 10 s
2.437 6.124 20 s

JOGO þ COU 2.819 8.661 1 s
0.800 2.294 10 s
0.650 1.857 20 s

JOGO 3.703 13.099 0.15
JOGO þ LS 1.322 8.407 0.22

SEGO 32.450 (51.003) 0.03
(53.630) (58.884) (0.02)

SEGO þ LS 17.728 27.758 0.14
(2.422) (27.758) (0.28)

LSfirst 3.043 9.044 0.27
LSbest 1.371 8.407 1.16

RA 0.530 2.874 2.17
RA þ LS 0.058 0.500 3.33

Stochastic
rLS 1.36470.012 7.770 1a

0.04470.001 0.820 10a

rSEGO 0.03570.001 0.779 1a

0.000670.0003 0.260 10a

GRASP 0.03870.001 0.649 1a

0.01570.0003 0.384 10a

ILS 0.54770.006 6.182 1a

0.14970.002 0.920 10a

SA 0.16170.003 1.298 1a

0.05770.001 0.780 10a

ACS 0.00175�10�19 0.124 1a

070 0 10a

a The numbers reflect the set complexity budget per subcarrier problem.
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second randomization parameter besides β2 ¼ 1 reduces
suboptimality. However, the performance is not sensitive
to the exact choice of β1 in our selected scenarios, cf. also
the parameter selection in Line 3 of Algorithm 4.

6.3. Medium-scale problem results

6.3.1. Greedy deterministic algorithms
We start the discussion of the results on medium-scale

problems with the deterministic algorithms in Table 4.
Regarding the results for the solver Couenne we see that
even with a larger complexity budget of 10 s it is not
possible to come close to the performance of any shown
heuristic. This is another motivation for using heuristics.
Fig. 3 where our complexity metric is related to the
simulation time of our algorithms shows that this complexity
comparison is in fact favorable for Couenne. The complexity of
the greedy schemes JOGO, SEGO and RA depends on the
number of data-bits that are feasible, and therefore on the
scenario and subcarrier (frequency bin). The values for SEGO
in brackets are the result of starting the greedy scheme in the
reverse order of users' line lengths. For the TSP, greedy
heuristics have shown to provide good starting points for
local search schemes, where a better performing greedy
search gives better starting points [30]. A comparison of the
results for JOGO and SEGO confirms this intuition. The rollout
algorithm (RA) has on average a higher complexity metric
than the lower limit (103 power evaluations) set for the
randomized algorithms. However, combining RA with local
search we find lower average suboptimality and (maximal)
complexity compared to SA with 104 power evaluations.

6.3.2. Local search strategies
Next we discuss the selected local search strategies.

While jN ð2ÞðrÞjZ jN ð1ÞðrÞj means that a two-step neighbor-
hood potentially necessitates more objective evaluations,
the performance of algorithms using N ðrÞ ¼N ð2ÞðrÞ out-
performed that using N ðrÞ ¼N ð1ÞðrÞ, cf. the selected
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parameters in Table 3 and the neighborhood definitions
described in Section 4.1.3. Furthermore, the suboptimality
in Table 4 of most stochastic algorithms is satisfying,
which justifies setting the complexity budget to a fairly
low value (103 power evaluations, i.e., less than 2% of the
fastest optimal scheme's average complexity in [10]).
Another selected parameter common to all local search
schemes is the local search strategy, with the exception
being the pure LS algorithm where we have tried both
discussed strategies. We argue that a first-improving
strategy saves operations compared to a best-improving
(i.e., full neighborhood) search, which is especially critical
when a tight complexity budget is used. This can also be
seen from the results of “LSfirst” using the first-improving
strategy compared to that of “LSbest” using the best-
improving strategy. Note however that the speed of a local
search depends on its initialization and is typically faster
when initialized at a solution different from r¼ 0 as done
for pure LS. With the exception of such improved initi-
alization we have not explored techniques for reducing the
complexity of local search, cf. [30] for references on such
techniques proposed for the TSP.
6.3.3. Stochastic algorithms
A parameter setting with a similar impact as the local

search strategy is the choice B̂ ¼ B for ACS, cf. its usage in
Line 10 of Algorithms 7. Not restricting the bit allocation
possibilities in a virtual ant's sampling process to values in
frA�uAUBjpðrÞAQg opens the chance that the generated
starting point is infeasible, but allows us to save objective
evaluations and therefore to run more local searches from
different starting points. For given scenarios and para-
meter settings ACS is the best performing algorithm out of
the compared schemes, with optimal results at 104 power
evaluations and suboptimal results only for a single sub-
carrier/scenario at 103 power evaluations.

Next we focus on the performance results of rando-
mized heuristics in Table 4. The randomized base-line
algorithm rLS gives results similar to JOGO with subse-
quent LS but at higher complexity, which shows that the
naive rLS scheme is not a good choice for the constrained
combinatorial problem in (2). Fig. 4(a) depicts the average
suboptimality of all randomized heuristics as a function of
the complexity budget in various 6-user VDSL network
scenarios. Intuitively, allowing the algorithms to test more
solutions leads on average to a better performance. The
performance curve for SA in Fig. 4(a) flattens out at a
higher number of power evaluations, indicating an insuffi-
cient mechanism for escaping local optima and/or a too
small neighborhood size. ACS performs best in these test
scenarios, where its curve stops at 103 as it is optimal on
the simulated points beyond that. Note that rLS eventually
performs better than ILS and SA, which hints at insufficient
diversification capabilities of these two schemes. Fig. 4(b)
similarly shows, for a fixed complexity budget of 103

evaluations, the dependency of the heuristics' average
suboptimality on the weight on data-bits �wu ¼ �w; 8uAU ,
and hence implicitly on the user's targeted transmission
rate, as the average number of data-bits per user increases
with these weights, cf. Fig. 2. JOGO, the solution of which is
used as an initial incumbent for all schemes, was found to
have a monotonously increasing suboptimality with �w.
Also, the optimal number of data-bits does not change in
most scenarios above �w ¼ 10�2. Differently to JOGO, all
heuristics show a peak suboptimality for a mediumweight
value, however, at different values for different heuristics.
Intuitively this can be explained by the fact that with
increasing �w what matters most is the total number of
data-bits achieved by all users. Then it matters less how
the data-bits are distributed among the users as this
distribution only influences the transmit power which
has a low weight in the objective for high values of �w. A
similar behavior has been observed for branch-and-bound
schemes in [16].

6.4. Large-scale problem results

Due to the large number of 30-user scenarios under
combinations of the four selected subscriber line lengths
we uniformly sample 200 and 100 scenarios (not cable
lengths!) for the deterministic and randomized algo-
rithms, respectively, make 50 repetitions for randomized
algorithms, and present mean values with 95% confidence
intervals according to a t-test. In order to reduce the
variance of our results we run all heuristics on identical,
sampled scenarios. The parameterization of all algorithms
is the same as in the previous section. Furthermore, as we
lack an optimal solution we use the greedy algorithm JOGO
as our reference and show the improvements in objective
value. The maximum complexity limit is now 2�104

objective evaluations. Table 5 reports our average simula-
tion results, where the values marked by a footnote ‘a’
reflect the applied stopping criterion (complexity budget)
and exclude the incumbent initialization using JOGO
which would add 150 operations.



Table 5
Simulation results comparing various heuristics to the greedy heuristic JOGO on various 30-user VDSL scenarios with a subset of 33
subcarriers.

Algorithm Mean obj. improvement [%]
(per subcarr.)

[Min.,Max.] improv. [%] of
sum-obj. over subcarr. ~C

Mean op.-count [�103] per subcarr.

Deterministic
JOGO 0 [0, 0] 1.7970.06
JOGO þ LS 8.02970.781 [0.909, 32.129] 3.9270.07
SEGO �63.99671.664 [�76.569, �14.716] 0.0870.00
SEGO þ LS �64.75570.928 [�74.966, �39.134] 2.3470.05
LSfirst 0.35770.193 [0, 12.339] 4.0670.10
LSbest 8.02270.778 [0.811, 31.480] 40.7070.91
RA 6.49471.181 [0, 36.078] 121.7775.60
RA þ LS 8.72870.837 [1.358, 32.971] 248.0476.04

Stochastic
rLS 070 [0, 0] 10a

070 [0, 0] 20a

rSEGO 8.89770.004 [0, 29.024] 10a

9.75670.002 [1.360, 21.886] 20a

GRASP 9.04770.004 [0, 29.024] 10a

9.86070.002 [1.484, 21.886] 20a

ILS 8.66170.011 [0, 28.469] 10a

9.15270.007 [1.137, 21.886] 20a

SA 5.53670.023 [0, 29.024] 10a

5.74270.025 [0, 20.029] 20a

ACS 6.96570.000 [0, 20.618] 10a

7.24470.000 [1.618, 13.070] 20a

a The numbers reflect the set complexity budget per subcarrier problem.
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The randomized heuristics GRASP, rSEGO and ILS
perform now best, with an improvement upon the objec-
tive values achieved by the greedy base heuristic by on
average 9.9%, 9.8%, and 9.2%, respectively, under the limit
of 2�103 objective evaluations. Note however that the
simple deterministic extension of the greedy constructive
heuristic JOGO by a two-step local search (with a negli-
gible difference whether we initialized LS at the solution of
JOGO or at r¼ 0, using JOGO solely to provide an incum-
bent solution) improves the greedy heuristic already by on
average 8% while taking on average only 3.92�103 power
evaluations. Notably, the maximum improvement in sum-
objective over all 33 tested subcarriers encountered in any
tested network scenario is as high as 32%.

6.5. Discussion

Considering the parameter settings in Table 3 and the
results in Table 4 it becomes evident that those schemes
work well which use some kind of a diversification
method (a “guided” randomization) to obtain different
starting points for a local search. These schemes can be
summarized as “multi-point” or “multi-start methods”
[25, Chapter 12] and categorized from this point of view:
All presented multi-start algorithms have in common that
they use a “guided” randomization for generating different
starting points. However, while in ILS and SA solutions are
improved iteratively, rSEGO, GRASP and ACS build the
initial starting points for local search from scratch in a
constructive way. Also, the results under ILS and SA are
worse in comparison to the other stochastic methods
(except rLS, which is inferior due to its evaluation of
infeasible solutions), which hints that the diversification
achieved in these schemes is insufficient. We note how-
ever that ILS offers a possibility to improve diversification
by altering the perturbation method in Line 7 of Algorithm
9. Another criterion is the memory used in multi-start
schemes [25, Chapter 12]. GRASP on the one hand is
memory-less (with the exception of the choice of random
parameters). On the other hand, rSEGO and ACS use
memory in the form of value tables which allow us to
reinforce decisions which repeatedly lead to good perfor-
mance. Note that one possible way of extending our
algorithms is by allowing moves through infeasible regions
of the search space, e.g., by utilizing penalty functions.
7. Conclusions

We study the application of ten selected heuristics to a
non-convex integer power control problem in digital
subscriber lines (DSL). In various 6-user DSL scenarios
provably near-optimal results are obtained by several of
the proposed randomized heuristics. In 30-user scenarios
optimal results are intractable and a deterministic greedy
constructive heuristic “JOGO” is hence chosen as a refer-
ence. Extending this reference algorithm by a proposed
local search scheme gives already average improvements
of over 7% at low complexity. Randomized heuristics still
show slight improvements beyond that for moderate
complexity limits. Quantitatively, the proposed heuristics
have shown an average gain in objective value compared
to the greedy constructive heuristic of up to 10% for the
larger 30-user scenarios.
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